93 research outputs found

    Some non monotone schemes for Hamilton-Jacobi-Bellman equations

    Get PDF
    We extend the theory of Barles Jakobsen to develop numerical schemes for Hamilton Jacobi Bellman equations. We show that the monotonicity of the schemes can be relaxed still leading to the convergence to the viscosity solution of the equation. We give some examples of such numerical schemes and show that the bounds obtained by the framework developed are not tight. At last we test some numerical schemes.Comment: 24 page

    Optimal Liquidity Management and Hedging in the presence of a non predictable investment opportunity

    Get PDF
    In this paper, we develop a dynamic model that captures the interaction between the cash reserves, the risk management policy and the profitability of a non-predictable irreversible investment opportunity. We consider a firm that has assets in place generating a stochastic cash- ow stream. The firm has a non-predictable growth opportunity to expand its operation size by paying a sunk cost. When the opportunity is available, the firm can finance it either by cash or by costly equity issuance. We provide an explicit characterization of the firm strategy in terms of investment, hedging, equity issuance and dividend distribution.

    A Probabilistic Numerical Method for Fully Nonlinear Parabolic PDEs

    Full text link
    We consider the probabilistic numerical scheme for fully nonlinear PDEs suggested in \cite{cstv}, and show that it can be introduced naturally as a combination of Monte Carlo and finite differences scheme without appealing to the theory of backward stochastic differential equations. Our first main result provides the convergence of the discrete-time approximation and derives a bound on the discretization error in terms of the time step. An explicit implementable scheme requires to approximate the conditional expectation operators involved in the discretization. This induces a further Monte Carlo error. Our second main result is to prove the convergence of the latter approximation scheme, and to derive an upper bound on the approximation error. Numerical experiments are performed for the approximation of the solution of the mean curvature flow equation in dimensions two and three, and for two and five-dimensional (plus time) fully-nonlinear Hamilton-Jacobi-Bellman equations arising in the theory of portfolio optimization in financial mathematics
    • …
    corecore